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modes
in classical and quantum optics



What is a mode ?

mode basis :
a complete orthonormal set  ( fn ) of modes

mode :
a normalized solution  f1(r,t) of Maxwell equations



Description of a classical multimode field

general expression for the complex electric field:

complex amplitude

"quadrature components"

E+(r, t) =
X

n

(En,X + iEn,P ) fn(r, t)

E+(r, t) =
X

n

En fn(r, t)



z-propagating, multi-transverse, multi-temporal mode field:

with

Separation spatial/temporal modes

if there is a single transverse mode:

propagating time



Description of a quantum multimode field

Ê+(r, t) =
X

n

(Ên,X + iÊn,P ) fn(r, t)

general expression for the complex electric field operator:

[ÊnX , Ên0P ] = 2iE2
0�n,n0

]ân, â
†
n0 = �n,n0[

Ê+(r, t) = E0

X

n

ân fn(r, t)

QUANTUM OPTICS



Ê+(r, t) =
X

n

(Ên,X + iÊn,P ) fn(r, t)

the double linearity of quantum optics

-linearity of Quantum Mechanics
-linearity of Maxwell equations

Two Hilbert spaces to consider

• the modal Hilbert space Hmod

of solutions of Maxwell equations
optical coherence

• the quantum Hilbert space Hq

of quantum states of light
quantum coherence



Different mode bases
- the travelling plane wave

- Hermite Gauss modes

- the pixel modes

-the temporal 
Hermite Gauss pulses 

-the time bin modes

temporal modes

ei(k.r�!t)

t

x

t

transverse/spatial modes



Different mode bases
- the travelling plane wave

- Hermite Gauss modes

- the pixel modes

-the multi-frequency
Hermite Gauss modes 

-the "frequency band"  modes
or ‘frexels’

transverse/spatial modes

frequency modes

ei(k.r�!t)

w

x

w

any solution of Maxwell equations is an element of a mode basis



Quantum state in mode basis change

the same quantum state            has different expressions
in different mode bases

| i

| i =
X

p1

X

p2

... Ap1,p2,...|p1 : f1, p2 : f2, ...i

=
X

q1

X

q2

... Bq1,q2,...|q1 : g1, q2 : g2, ...i

{fn} {g`}
{b̂`}{ân}

Umod

two-mode example:

on basis g± = (f1 ± f2)/
p
2

factorized
entangled

| i = |squeezed vac : f1i ⌦ |squeezed vac : f2i
| i = |EPRentangled statei



mode basis-independent, or "intrinsic", quantities:

- Wigner function values:

- total photon number:

"negativity" of W is intrinsic

N̂tot =
X

`

b̂†` b̂` =
X

n

â†nân

- P function values:
"non-classicality " is intrinsic

W(0) does not depend on mode basis

Wb(�1, ...) = Wa(↵1, ...)

(�1, ...)
T = U(↵1, ...)

Twith

hypervolume of negative part is conserved



How many modes ? 



Ci,j
coherence = hâ†i âji

counting modes

is there a minimum number of modes in which a state lives? 

the number of excited modes is depends on the mode basis

the coherence matrix can be diagonalized
by a mode basis change

coherence matrix:



Ccomplex =
0

0

0

0

0 00

example: case of three modes, two non-zero eigenvalues

intrinsic two-mode state

N1

N2

useful for example to make full tomography of the state

the number of non-zero eigenvalues (rank) of covariance matrix
is the minimum number of modes needed

to describe the quantum state

the corresponding Hilbert space is the smallest space
in which the state is living

counting modes



intrinsic single mode state 

there is a mode basis         
in which it is single mode

its coherence matrix has only one nonzero eigenvalue

{g`}

| i =
⇣X

Aq1 |q1 : g1i
⌘
⌦ |0 : g2i ⌦ |0 : g3i ⌦ ...



Covariance matrixthe single photon state: an intrinsic
single mode state 

| 1i =
X

n

An|1 : fni

defined as eigenstate of           with eigenvalue 1N̂tot

g1 =
X

n

Anfn

can be written: | 1i = |1 : g1i ⌦ |0, 0, ...i

a single photon state is always a single mode state

with

a single photon state cannot be defined
independently of the mode in which it is defined

its properties depend on this mode



(|1 : fr , 0 : fti+ |0 : fr , 1 : fti)/
p
2

(fr + ft)/
p
2

fr

f t

single photon in single mode

example: single photon through beamsplitter

|1i



single mode states and optical coherence

g(1) =
< E(�)(r, t)E(+)(r0, t0) >

(< E(�)(r, t)E(+)(r, t) >< E(�)(r0, t0)E(+)(r0, t0) >)1/2

|g(1)| = 1

interferences are of perfect visibility
whatever the quantum state

interference visibility: a mode property, not a state property

in any single mode state :

with

(R. Glauber)



Determination of the mode
of a single photon state



if « click »

photon counter

.

Determination of the mode of a heralded single photon

Parametric down-conversion

O. Morin, C. Fabre, J. Laurat PRL 111, 213602 (2013)

phase-randomized
Local Oscillator

- time

tclick

.
I i(t)

i(t)

t1 t3 t5 t500 t1000

time bin basis
500 before click
500 after click 

t7

related work : A. Mc Rae,T. Brannan , R. Rachal,  A. Lvovsky PRL 109, 033601  (2012)



one gets a 1000  1000  matrix :⇥
averaged over 
a great number of clicks

eigenvalues

only one eigenvalue different from vacuum fluctuations
the generated state is indeed single mode

diagonalisation of Cexp :

Cexp
n,n0 = i(tn)i(tn0)

vacuum level

eigenstate of non-zero eigenvalue

the corresponding eigenstate gives the
shape of the temporal mode of the single photon

= 2Ccoherence + 1



Complete characterization
of multimode Gaussian states



in contrast Gaussian states are completely characterized
by the covariance matrix

the coherence matrix 
can be used to count modes  on any quantum state, 
Gaussian or not, but it gives partial information

of dimension (2Nmodes)⇥ (2Nmodes)

it can be diagonalized, but the corresponding
linear transformation is not a mode basis change

The covariance matrix
Ci,j

coherence = hâ†i âji



mode basis 
change

vacuum

uncorrelated
squeezed mode

basis

multimode
squeezing

turns
squeezed mixed states
into entangled states

characterization
of a multimode Gaussian quantum state:

multimode  
Gaussian
pure state

{g`} U2
mod

for a pure state:

Bloch Messiah (or Singular Value) decomposition



mode basis 
change

mode basis 
change

uncorrelated
thermal
states

uncorrelated
thermal mode

basis

uncorrelated
squeezed mode

basis

multimode
squeezing

turns
squeezed mixed states
into entangled states

produces
correlated

classical noise

multimode  
Gaussian

mixed state

{fn} {g`}U1
mod U2

mod

for a mixed state:

two mode basis

Bloch Messiah Williamson reduction

characterization
of a multimode Gaussian quantum state:



- all pure multimode Gaussian states are factorizable
there is a mode basis in which:

- all mixed multimode Gaussian states are separable
there is a mode basis in which

there are no intrinsically entangled Gaussian states

characterization
of a multimode Gaussian quantum state:



multimode input beam

Local Oscillator
in mode 

frequency

make a series of homodyne measurements
using a set of orthogonal modes 

+

-

fn(r, t)

�2ÊnP

�2ÊnX

fn(r, t)

How to measure the covariance matrix? 

balanced homodyne detection gives information about the 
projection of the multimode state on the local oscillator mode



multimode input beam

Local Oscillator
in mode 

frequency

+

-

�2(Ên,X + Ên0X)

fn + fn0

hÊnXÊn0Xi = (�2(ÊnX + Ên0X)��2ÊnX ��2Ên0X)/2

How to measure the off-diagonal part of the covariance matrix? 

make homodyne measurements
using the sum of two modes 



Generation and characterization
of a highly multimode 

Gaussian non-classical state 



A multi-frequency-mode light: 
the frequency comb generated by a mode-locked laser

Frequency modes of a mode-locked laser: about 100.000

frequency

time

optical
frequency
comb:



Mode-
locked laser

Tround trip = Tinter−pulse

a quantum frequency comb ?

generation by parametric down conversion
of a mode-locked laser

the 105 frequency modes : are they entangled ?

Parametric crystal



all couples of frequencies
modes should be entangled !

pump spectrum

down-converted
light spectrum

Generation of a multimode quantum state
from multimode pump

parametric down conversion of a monochromatic pump
gives rise to EPR entangled signal and idler beams



A liitle bit of theory ...

!

!¢

Symmetrical matrix

pump

( )å
¢

¢
+
¢

+
¢ +=

!!

!!!!!!

,
, ˆˆˆˆˆ aaaaGH

!

!¢

!! ¢,G

Shifeng Jiang, N. Treps, C. Fabre, New Journal of Physics, 14 043006 (2012)

G. De Valcarcel, G. Patera, N. Treps, C. Fabre, Phys. Rev. A74, 061801(R) (2006)



Diagonalizing the interaction

Ø Eigenstates:  
linear combinations of frequency modes
« supermodes »

Ø eigenvalues

: multi-squeezing hamiltonian

!

!

!aUb kk ˆˆ å=
!

!¢
!! ¢,G

Ĥ = ! Λk b̂k
2 + b̂k

+2( )
k=1

Nm

∑

kL

Ψout = Squeezed statek (Λ1) ⊗ ...⊗ Squeezed statek (ΛNm
) ⊗ 0 ⊗ ...



Simple example: Gaussian variation of
!! ¢,G

kL

supermode shapes

( )kk r-L=L 0

Eigenmodes:  combs with Hermite-Gauss modal amplitudes

frequency
HG0 HG1 HG2



Simple example: Gaussian variation of
!! ¢,G

kL

supermode shapes

( )kk r-L=L 0

Eigenmodes:  trains of pulses with Hermite-Gauss temporal 
shapes

time
HG1HG0 HG2



mirror on PZT
to change LO phase

pulse shaping
by Spatial Light Modulator

Experimental set-up

O. Pinel et al, Phys. Rev. Letters 108, 083601 (2012) 
J. Roslund et al, Nature Photonics, 8, 109 (2014)
R. Medeiros de Araujo et al, Phys Rev A89, 053828 (2014)
Yan Cai et al, Nature Com 8, 15645 (2017)

parametric crystal



mirror on PZT
to change LO phase

Experimental set-up

parametric crystal

10 frequency band modes

55 homodyne
measurements !

O. Pinel et al, Phys. Rev. Letters 108, 083601 (2012) 
J. Roslund et al, Nature Photonics, 8, 109 (2014)
R. Medeiros de Araujo et al, Phys Rev A89, 053828 (2014)
Yan Cai et al, Nature Com 8, 15645 (2017)



experimental value of the 20 by 20 covariance matrix



characterization of the multimode state
by Williamson Bloch Messiah reduction

excess noise of 
input thermal 
modes:
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characterization of the multimode state
by Williamson Bloch Messiah reduction

vacuum noise

linear
transformation 
(mode basis 

change)

linear
transformation 
(mode basis 

change)

uncorrelated
thermal
states

multimode
squeezing

multimode 
mixed 

Gaussian
quantum state

mean photon 
number
in each

eigenmode
of the

coherence matrix



790 795 800
Wavelength (nm)

790 795 800
Wavelength (nm)

790 795 800
Wavelength (nm)

790 795 800
Wavelength (nm)

790 795 800
Wavelength (nm)

790 795 800
Wavelength (nm)

790 795 800
Wavelength (nm)

790 795 800
Wavelength (nm)

1)

2)

3)

4)

5)

6)

7)

8)

frequency shape of the squeezed eigenmodes



multi-partite entanglement

multipartite optimal entanglement witnesses from
covariance matrix: 
J. Sperling and W. Vogel, Phys. Rev. Lett. 111, 110503 (2013).

limit of 
multi-entanglement

all 115 974 multipartitions are entangled !

115 974 
possible multipartitions
with 10 bands

S. Gerke, J. Sperling,
W. Vogel, Y. Cai,
J. Roslund, 
N. Treps, C. Fabre, 
Phys. Rev. Letters
114, 050501 (2015)



Multiplexed detection
and processing



the Multi-Pixel Homodyne Detection

M.Beck, PRL 84 5748 (2000);  
S. Armstrong et al, Nat. Comm. 3, 1026 (2012).
G. Ferrini et al New J Phys 15, 093015 (2013)

multimode
input beam

Local
Oscillator

A technique to measure
simultaneously the different modes

• Simultaneous acquisition of frequency bands

Diodes
Array



�
�

1 2 3 4 5 6

6

1 2 3

4 5
VarianceCorrelation

Multiplexed determination of (part of) quadrature covariance matrix



1 2 3 4 5 6

6

1 2 3

4 5

Multiplexed determination of quadrature of any mode

as a mode  is a linear combination of « frexel » modes,
computer calculates the same linear combination of the 
recorded fluctuations

permits « live » access
to the quadrature fluctuations of any mode, 



Mode optimization
in parameter estimation



optical system p-dependent
light beam(s)

p

E(p)

Estimator
of p

General scheme for estimating a parameter p
using information carried by light

Detection
+ Data processing

What is the smallest measurable variation of p around value p0 ,
for a given mean photon number ?

Light 
beam(s)



The minimum variance of any (unbiased) estimator
is given by the inverse of quantum Fischer information

Quantum Cramer Rao Bound

the bound is optimized over 
- all the possible techniques of photodetection
- all the possible data processing strategies

It depends only
on the characteristics of the quantum state of light 

E(p)

optimizedopti-
mized

ψ(p)

p

not yet optimized !



choice of light state                ?   

- non-classical state of light 

- multimode state

- large mean photon number N
quantum limits scale as 1/Nx

ψ(p)

best choice for an experimentalist in Quantum Optics:

choice of mode shape
choice of multimode quantum  light state

Ê+(r, t) =
X

n

(X̂n + iŶn) fn(r, t)



a practical choice : the multimode Gaussian pure state

includes a wide class of non-classical states

- single and multimode squeezed states
- Einstein Podolsky Rosen (EPR) state
- multipartite quadrature entangled state

excludes states which are « more quantum »,
but not scalable to very large N value 

N ≈1015

optimization over :
- squeezing and entanglement
- number of modes
- the spatio-temporal shape of modes

- coherent state with high photon number



umean (x, y, t, p) =
1
N

ψ p, t( ) Ê (+) (x, y) ψ(p, t)

Useful mode 1: the « illumination mode »

contains the spatio-temporal dependence of the mean field.

umean(x, y, z, t, p) ' umean(x, y, z, t, p = p0) + (p� p0)
@umean

@p

for a small variation around : p0

information about  p related to



udet (x, y, t) = pc
∂umean
∂p p=p0

normalizing factor

umean (x, y, t, p) =
1
N

ψ p, t( ) Ê (+) (x, y) ψ(p, t)

Useful mode 1: the « illumination mode »

contains the spatio-temporal dependence of the mean field.

Useful mode 2: the «detection mode »

umean(x, y, z, t, p) ' umean(x, y, z, t, p = p0) + (p� p0)
@umean

@p

for a small variation around : p0



Time delay
of light pulse 

udet

t

umean

Phase shift 

x

umean

udet

examples of detection mode



Quantum Cramer Rao bound for Gaussian pure states

p-sensitivity

« shot noise » noise term

expression in the high N limit: 



Quantum Cramer Rao bound for Gaussian pure states

p-sensitivity

« shot noise » noise term
Diagonal element of the
inverse covariance matrix
in the detection mode 

expression in the high N limit: 

depends only on the noise of the detection mode

udet



Quantum Cramér Rao bound
using experimentalist's non-classical Gaussian resources

Squeezer 1 s1

p

Squeezer 2 s2

Squeezer 3 s3

Coherent state

E(p)

E(p)

Detection
+ Data processing

Linear
couplers,

Interferometers
mode shapers

(implement
any unitary

modal
transformation)



Quantum Cramér Rao bound
using experimentalist's non-classical Gaussian resources

p

min2
s

N
pp c

CRb =D

{ }sMin ssss ,...,, 21min =

E(p)

E(p)

Detection
+ Data processing

Multimode
Gaussian light
in controlled

modes

obtained when the detection mode 
contains best squeezed mode 



- Do not entangle detection mode with other modes 

- Put maximum power in coherent mode 

Instructions for the experimentalist

- Squeeze the right mode
squeeze the detection mode

To get the lowest possible Quantum Cramer Rao bound

- Squeeze one mode only
squeezing is not « additive »

optical system p-dependent
light beam(s)

p

E(p)

Detection
+ Data processing

Light 
beam(s)

concerns state of light at the detection stage

- Minimize scaling factor pc



Experiments:
parameter estimation

below the standard quantum limit



M. Lassen et al.
Phys. Rev Letters
98, 083602 (2007)

Standard
Cramer Rao
bound

Reduced noise floor
using squeezed TEM10  

E(p)

Ä

Ä

TEM00

1) Estimation of transverse beam displacement

Squeezed TEM01 

DE(p)



Detection mode for 

2 terms in the detection mode:
• Carrier: sensitive to phase delay, accessed by phase measurement

• Envelope: sensitive to group delay, accessed by time of flight 
measurement

using both information:

Mean field mode Detection mode

2) Estimation of a time delay



Recent experiment

estimation made in the coherent phase measurement case 

(unpublished)

improvement of estimation from 2.8 10-20 s to 2.4 10-20 s 
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3) Estimation of a spectral shift



multimode squeezed state produced
by parametric down conversion of mode locked laser: 

�� ��

�!

Quantum Optical 
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Computer�
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~20% increase in sensitivity 61 kHz/
p
Hz 50 kHz/

p
Hz

Experiment
J. Roslund, Y. Cai, 
C. Fabre and N. Treps
A Quantum spectrometer. 
in preparation



Conclusion



- in many applications, the shape of the mode(s) 
in which a quantum state lives
is as important as the quantum state itself

- possibility of change of mode basis 
opens many possibilites

- multiplexed detection permits to extract simultaneous
information about different modes 
without physically extracting the modes

- manipulating multimode  quantum states of light
is a good starting point for up-scalable
quantum information processing,
in particular for measurement based quantum computing





Quantum state in mode basis change

the same quantum state            has different expressions
in different mode bases

| i

two-mode example:

| i = |1 : f1 , 1 : f2i

with g± = (f1 ± f2)/
p
2

factorized
entangled| i = |2 : g+ , 0 : g�i � |0 : g+ , 2 : g�i


