Frequency Conversion

 Frequency conversion-Hamiltonian^[1]

$$\hat{\mathcal{H}} = \mathrm{i}\hbar\kappa A_p \,\hat{a}_{\mathrm{in}} \hat{a}_{\mathrm{out}}^{\dagger} + \mathrm{h.c.}$$

 strong pump field A_p treated classically

 $\hat{a}_{\rm in}(t) = \hat{a}_{\rm in}(0)\cos\left(\kappa A_p t\right) - \hat{a}_{\rm out}(0)\sin\left(\kappa A_p t\right)$

$$\hat{a}_{\text{out}}(t) = \hat{a}_{\text{out}}(0)\cos\left(\kappa A_p t\right) + \hat{a}_{\text{in}}(0)\sin\left(\kappa A_p t\right)$$

• complete conversion for

 $\kappa A_p t = \frac{\pi}{2}$

 κ depends on effective nonlinearity d_{eff}, geometry and mode overlap

Dispersion-engineered frequency up-conversion

Brecht, et al., New J. Phys. 13, 065029 (2011)

Process engineering – Pump pulse

Process engineering – Pump pulse

Process engineering – Pump pulse

Dispersion engineered frequency conversion

Bogoliubov transformation: beam splitter

$$\hat{A}_{\text{red}}^{(k)} \to \cos(\theta) \hat{A}_{\text{red}}^{(k)} + \sin(\theta) \hat{A}_{\text{green}}$$

$$\hat{A}_{\text{green}} \to \cos(\theta) \hat{A}_{\text{green}} - \sin(\theta) \hat{A}_{\text{red}}^{(k)}$$

efficiency adjusted with pump power

Dispersion engineered frequency conversion

Dispersion engineered frequency conversion

Reddy, et al., Optica 5, 423-428 (2018)

PPLN waveguide

In-house manufactured periodically poled LN waveguide:

- Crystal length: 15...40 mm
- SFG: 1536nm / 874nm to 557nm
- Poling period 4.4 µm
- Temperature stabalized at 190°C
- Bandwidth compression

Group velocity matching

Spectrum before vs. after conversion

Spectrum of converted photons measured on single photon sensitive spectrometer

Spectrum is changed, but no implication on quantumness / efficiency

Ideal spectral filter: efficiency 13,4 % Allgaier

Allgaier, et al., Nat. Com. 8, 14288 (2016)

Measurement Tomography of QPG

quantifies quality of QPG for TM POVM measurements

Temporal-mode detector tomography

V. Ansari, G. Harder, M. Allgaier, B. Brecht, and C. Silberhorn. arXiv:1702.03336

Temporal-mode detector tomography

Temporal-mode detector tomography

V. Ansari, G. Harder, M. Allgaier, B. Brecht, and C. Silberhorn. arXiv:1702.03336

Temporal-mode tomography

Test on shaped classical pulses

Average fidelity of reconstructed temporal-mode density matrices

V. Ansari, G. Harder, M. Allgaier, B. Brecht, and C. Silberhorn. arXiv:1702.03336

Requirements for high dimensional quantum coding

B. Brecht, D. V. Reddy, C. Silberhorn, M. G. Raymer, PRX 5, 041017 (2015)

1 Engineered parametric downconversion

2 Quantum pulse gate

A. Eckstein et al., PRL 106, 013603 (2011), arXiv:1006.5667; G. Harder et al., Opt. Express 21 13975 (2013), arXiv:1304.6635

V. Ansari et al, arXiv:1607.03001v2 (2018)

Purity from the $g^{(2)}$

All paths to two detectors for g⁽²⁾ measurement

Provides purity information independent of basis

	Purity from g ⁽²⁾	Tomography
•	0.929 ± 0.008	0.896 ± 0.008
*	0.528 ± 0.010	0.523 ± 0.008

V. Ansari et al., arXiv:1607.03001v2 (2018)

	Purity from g ⁽²⁾	Tomography
٠	0.929 ± 0.008	0.896 ± 0.008
	0.528 ± 0.010	0.523 ± 0.008
7	0.327 ± 0.005	0.317 ± 0.005

TM tomography of single photons

Parameter estimation with incoherent emitters

* Coherent A.P.E. PulseCheck Autocorrelator

Parameter estimation with incoherent emitters

M. Tsang, R. Nair, and X.-M. Lu, Phys. Rev. X 6, 031033 (2016).

Overcoming the curse

M. Tsang, R. Nair, and X.-M. Lu, Phys. Rev. X 6, 031033 (2016).M. Paur, B. Stoklasa, Z. Hradil, L.L. Sanchez-Soto, and J. Rehacek, Optica 3 1144 (2016)

Mode-selective measurement

Experiment

Results: Time-frequency estimation

Conclusion

Time

Thank you for your attention!

Deutsche Forschungsgemeinschaft

European Research Council Established by the European Commission

