Characterization of single-photon pulses

Brian J. Smith^{1,2}, A. O. C. Davis², M. Karpiński^{2,3}, V. Thiel² ¹Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon ²Clarendon Laboratory, University of Oxford, UK ³Institute of Experimental Physics, University of Warsaw, Poland

QCUMbER Conference, 10-13 May 2018

What is an ultrashort optical pulse?

• Solve Maxwell equations in free space to give wave equation

φE

φB

φE

$$\oint \mathbf{E} \cdot d\mathbf{A} = \frac{q_{enc}}{\varepsilon_0} \qquad \left(\nabla^2 - \frac{1}{c^2} \partial_t^2 \right) \mathbf{E} (\mathbf{x}, t) = 0$$

$$\oint \mathbf{B} \cdot d\mathbf{s} = -\frac{d\Phi_B}{dt} \qquad \text{Paraxial approximation leads to beams}$$

$$\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt} + \mu_0 i_{enc} \qquad \text{Carrier wave}$$

$$\mathbf{E}(\mathbf{x},t) = \hat{\mathbf{x}} \mathcal{E}_0 \alpha \left(z/v - t \right) u \left(x, y; z \right) \exp \left(ik_0 z - \omega_0 t \right)$$

Slowly-varying envelope approximation leads to pulses

Linearity of Maxwell equations implies superpositions: Wave packets

Direction of propagation

 n_1 n_2 n_3 n_4 $n_5 n_6$ $n_7 n_8$

Spectral-temporal mode

TEM₀₁ TEM_{02}

Qutrit

Polarization mode

Qubit

Qutrit

Transverse spatial mode

TEM₀₀

Photons and modes

We tend to work at two extremes of the optical (quantum) state "spectrum"

 n_8

Fixed *photon* number (say 1) we look at the *mode* distribution

Quantum state: Mode distribution of the photon and coherences between modes

Fixed *mode* number (say 1) we look at the *photon* distribution

Quantum state: Photon number distribution and coherences between different photon numbers (amplitude and phase) n

Time-frequency modes for quantum light

QCUMbER research explores both of these extremes

Focused on temporal-spectral pulsed modes of light (good for integrated optics)

Single- and two-photon states

$$\psi(t) = --\psi(t) + -\psi(t) + -\psi(t$$

We will look at this today...

Single- and two-mode states

$$\Psi\rangle = \sum_{n} c_{n} |n\rangle$$

If you want to know more – ask me later. . .

Pulsed modes

Why short pulses?

- Probe dynamics of material systems on ultrashort time scales (Chemistry Nobel Prize 1999)
- Nonlinear optical imaging (Chemistry Nobel Prize 2014)

• Machining and inscription (wave guide writing)

Nanosecond HAZ (Heat Affected Zone) Melt zone adds variability

Picosecond Less HAZ Rough surface adds variability

Femtosecond No HAZ Low variability

Femto-chemistry

STED Microscopy

Pulsed modes

Why short pulses?

- Wave guide writing (fs inscription)
- Telecommunications (pulse mode encoding)
- Metrology (LiDAR)
- Distributed sensing

Pulsed modes

Why TF states for Q Info?

• Large information capacity

- Spectral-temporal modes used in classical telecom: well-suited to optical fiber and integrated-optics platforms (Take a hint from telecom industry!)
- Frequency translation between nodes of a hybrid quantum network (atoms, ions, NV centers, QDs)
- Natural choice to examine temporal evolution of quantum systems (e.g. energy transport in a network)

Useful QuApplications

• Quantum computing (LOQC)

• Quantum-enhanced sensing

- "Single-particle" (excitation) superposition states: Being here and there at the same time!?
- Non-commuting observables
- Entanglement, steering, discord: Correlations between measurement outcomes that are "stronger than allowed classically"
 Coherence is key!
 - What is the "**Quantum***ness*?" Defining the precise resources / characteristics of quantum systems that enable non-classical protocols to surpass their classical counterparts is still an **open question**.

Photons are Ultracool and Ultrafast!

What is a photon?

Depends upon who you ask. . .

W. E. Lamb, "Anti-photon," Appl. Phys. B 60, 77-84 (1995).

A photon is an excitation of a quantum field mode.

A photon is what makes a detector click (photoelectric effect).

What is a click in a detector? That's for another day. . .

What is the state of a single photon?

The state of a single photon is the *mode function* that it occupies.*

- * Details on the "Photon wave function"
- B. J. Smith and M. G. Raymer, New J. Phys. 9, 414 (2007)
- I. Bialynicki-Birula, Progress in Optics XXXVI, E. Wolf, ed. (1996)
- J. E. Sipe, "Photon wave functions" Phys. Rev. A 52, 1875-1883 (1995)

• Pure states: Single-photon state = mode function

 $|1\rangle_{\psi} = a_{\psi}^{\dagger} |vac\rangle \qquad a_{\psi}^{\dagger} = \int a^{\dagger}(\omega)\psi(\omega)d\omega$

Interpret as probability amplitude for detecting a single photon near frequency ω (analogous to spectrum)

B. Brecht, Dileep V. Reddy, C.Silberhorn, and M. G. Raymer,Phys. Rev. X 5, 041017 (2015)

• Information can be encoded in the pulse mode shape of the photon (e.g. HG modes)

ω

Representations of ultrashort pulses

- Temporal envelope and phase $\alpha(t) = |\alpha(t)| e^{i\psi(t)}$
- Spectral envelope and phase $\tilde{\alpha}(\omega) = |\tilde{\alpha}(\omega)| e^{i\phi(\omega)}$

Representations of ultrashort pulses

From: I. A. Walmsley and C. Dorrer, "Characterization of ultrashort electromagnetic pulses," Advances in Optics and Photonics 1, 308–437 (2009)

• Chrono-cyclic representations:

Wigner
$$W(t,\omega) = \int_{-\infty}^{\infty} \alpha(t+t'/2)\alpha^*(t-t'/2)e^{i\omega t'} dt'$$

$$W(t,\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{\alpha}(\omega + \omega'/2) \tilde{\alpha}^*(\omega - \omega'/2) e^{-i\omega't} d\omega'$$

Marginals give temporal and spectral intensities:

$$I(t) = |\alpha(t)|^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} W(t,\omega) \,\mathrm{d}\omega$$
$$S(\omega) = |\tilde{\alpha}(\omega)|^2 = \int_{-\infty}^{\infty} W(t,\omega) \,\mathrm{d}t$$

Representations of ultrashort pulses

Wigner functions of

(a) Fourier-transform limited (FTL) Gaussian pulse

(b) pulse with Gaussian spectrum and quadratic spectral phase

(c) pair of identical FTL Gaussian pulses

(d) pulse with Gaussian spectrum and third-order spectral phase.temporal and spectral marginals are plotted

I(t)▲ Frequency (a) (c) Time $S(\omega)$ (b) (d)

From: I. A. Walmsley and C. Dorrer, Advances in Optics and Photonics **1**, 308–437 (2009) • Direct measurement of temporal amplitude difficult to achieve below a few ps (using a 'streak camera')

$$I\left(t\right) = \left|\alpha(t)\right|^{2}$$

• Spectrum of pulses 'relatively' easy to achieve

$$S(\omega) = |\tilde{\alpha}(\omega)|^{2}$$
$$\mathcal{F}\{\alpha(t)\} = \tilde{\alpha}(\omega)$$

• In either case, still need to determine phase (either temporal or spectral)

• Need to have some kind of time-varying element (that changes on a similar time scale as the pulse itself)

Use the pulse itself = **Intensity auto-correlation**

Can in principle try to determine temporal phase – but difficult in practice.

FROG: Frequency-resolved optical gating

Basically an intensity auto-correlator with a spectrometer

$$S_{\rm FROG}\left(\tau,\omega\right) = \left|\int_{-\infty}^{\infty} \alpha^2(t)\alpha^*(t-\tau)e^{-i\omega t} dt\right|^2$$

SPIDER: Spectral-phase interferometry for direct electric-field reconstruction

Interference term contains spectral phase gradient:

$$\frac{d\varphi(\omega)}{d\omega} \approx \frac{\varphi(\omega + \Omega) - \varphi(\omega)}{\Omega}$$
$$\varphi(\omega) = \operatorname{Arg}\{\Psi(\omega)\}$$

SPIDER: How to achieve spectral shear between two delayed replicas? Nonlinear frequency conversion!

This is NOT compatible with single photons (single-photon nonlinearity is 'hard')

• Single-photon density matrix (focus on ω - τ DOF)

$$\hat{\rho} = \sum_{\omega_1, \omega_1'} \rho^{(1)}(\omega_1, \omega_1') |\omega_1\rangle \langle \omega_1'|$$

(a classical mixture of pure states)

$$\hat{\rho} = \sum_{m,n} \rho_{mn} |\phi_m\rangle \langle \phi_n |$$

• Pure states (only one mode)

$$\hat{\rho} = \left|\psi\right\rangle\!\!\left\langle\psi\right|$$

Frequency eigenstate

$$\tilde{\psi}_{j}(\omega) = \left\langle \omega \middle| \psi_{j} \right\rangle = \delta_{\omega \omega_{j}}$$

$$\omega_{1} \omega_{2} \dots \qquad \omega_{N}$$

Wavepacket eigenstate $\tilde{\psi}(\omega) = \langle \omega | \psi \rangle$ • If we know a priori that a source emits only one photon at a time then...

the state of a single photon source describes how the photon is distributed across all the modes of the field (polarization, spatial, frequency).

• Single-photon density matrix is equivalent to classical field correlation function

$$g^{(1)}(\omega_{1},\omega_{1}') = \frac{\left\langle \hat{a}^{\dagger}(\omega_{1})\hat{a}(\omega_{1}')\right\rangle}{\sqrt{\left\langle \hat{a}^{\dagger}(\omega_{1})\hat{a}(\omega_{1})\right\rangle \left\langle \hat{a}^{\dagger}(\omega_{1}')\hat{a}(\omega_{1}')\right\rangle}} = \rho^{(1)}(\omega_{1},\omega_{1}')$$

• Two-photon density matrix is equivalent to the fourth-order field correlation function

$$g^{(2)}(\omega_{1},\omega_{2};\omega_{1}',\omega_{2}')$$

$$=\frac{\langle \hat{a}^{\dagger}(\omega_{1})\hat{a}^{\dagger}(\omega_{2})\hat{a}(\omega_{2}')\hat{a}(\omega_{1}')\rangle}{\sqrt{\langle \hat{a}^{\dagger}(\omega_{1})\hat{a}(\omega_{1})\rangle\langle \hat{a}^{\dagger}(\omega_{2})\hat{a}(\omega_{2})\rangle\langle \hat{a}^{\dagger}(\omega_{1}')\hat{a}(\omega_{1}')\rangle\langle \hat{a}^{\dagger}(\omega_{2}')\hat{a}(\omega_{2}')\rangle\rangle}}$$

$$=\rho^{(2)}(\omega_{1},\omega_{2};\omega_{1}',\omega_{2}')$$

$$\rho^{(2)}(\omega_{1},\omega_{2};\omega_{1}',\omega_{2}')=\langle \omega_{1},\omega_{2} |\hat{\rho}^{(2)}|\omega_{1}',\omega_{2}'\rangle$$

Generalizes to N-photon states!

Quantum optics becomes "classical" optics:
 – Techniques to measure g⁽¹⁾ and g⁽²⁾ for classical fields are sufficient to completely characterize quantum states!

$$g^{(1)}(\omega_{1},\omega_{1}') = \rho^{(1)}(\omega_{1},\omega_{1}') = \langle \omega_{1} | \hat{\rho}^{(1)} | \omega_{1}' \rangle$$

$$g^{(2)}(\omega_{1},\omega_{2};\omega_{1}',\omega_{2}') = \rho^{(2)}(\omega_{1},\omega_{2};\omega_{1}',\omega_{2}') = \langle \omega_{1},\omega_{2} | \hat{\rho}^{(2)} | \omega_{1}',\omega_{2}' \rangle$$

Single-photon characterization = Interferometry Two-photon characterization = Coincidence interferometry

Single-photon polarization tomography

• Polarization interferometry: Polarimetry

G. G. Stokes, Trans. Cambridge Philos. Soc. 9, 399 (1852)

Interference with 'known' reference pulse (Scan reference)

Homodyne

Poloycarpou et al, PRL **109**, 053602 (2012) Morin et al, PRL **111**, 213602 (2013) Z. Qin et al, Light: Sci. Appl. **4**, e298 (2015) **Hong-Ou-Mandel interference**

Wasilewski, Kolenderski, and Frankowski, PRL 99, 123601 (2007)

Nonlinear pulse gate

V. Ansari et al., PRL 120, 213601 (2018)

Requires tunable reference pulses matched to the source to be characterized. Is there another way? Scanning with a single pixel detector

Map frequency onto position

Kim Y H and Grice W P, *Opt. Lett.* **30** 908 (2005)

Simultaneous monitoring all spectral bins

* Dispersion ~ 950ps/nm over 10 nm range centered on 830 nm * FT of ~ 10^3 modes

Map frequency onto time (Fourier transform)

M. A. Muriel, J. Azaña, and A. Carballar, Opt.
Lett. 24, 1 (1999).
M. Avenhaus, A. Eckstein, P. J. Mosley, and C.
Silberhorn, Opt. Lett. 34, 2873 (2009).

10 min a_{25} a_{25} a_{30} a_{30} a_{30} a_{35} a_{30} a_{35} a_{3

Two-photon joint spectrum

Double pulse with spectral fringes

Simultaneous monitoring all spectral bins

* Dispersion ~ 950ps/nm over 10 nm range centered on 830 nm * FT of ~ 10^3 modes

Map frequency onto time (Fourier transform)

* Spectral resolution ~ 0.05 nm (23 GHz) limited by detector timing jitter (~ 200 spectral bins)

* Can be improved at telecom wavelengths

A. O. C. Davis et al, Optics Express 25, 12804 – 12811 (2017).

Spectral shearing interferometry

A. O. C. D. et al, arXiv 1709.05248 and 1802.07208

Scan spectral shear to map out single-photon state

How to achieve SPECTRAL SHEAR for single photon?

Spectral control by electro-optic phase modulation: CW field

phase modulation: Pulsed field

Electro-optic phase modulation: pulsed regime

RF field introduces a temporally varying phase

• Linear temporal phase:

 $E'(t) = E(t) e^{i\Omega t}$ frequency shear (in analogy to linear spectral phase corresponding to a temporal shear)

• Quadratic temporal phase: $E'(t) = E(t) e^{iAt^2} \longrightarrow spectral broadening}_{(for a Fourier limited pulse)}$

(in analogy to quadratic spectral phase causing temporal dispersion)

Spectral shear of single-photon pulses

L. J. Wright et al, Phys. Rev. Lett. 118, 023601 (2017)

Spectral shear of single-photon pulses

Linear temporal phase = spectral shear

- Deterministic spectral manipulation – every photon is frequency shifted!
- Shift comparable to the bandwidth
- No strong optical fields involved (no filtering or added noise)
- Preserves single-photon character: g⁽²⁾(0) unchanged (0.040 ± 0.001)

Spectral shearing interferometry

A. O. C. D. et al, arXiv 1709.05248 and 1802.07208

Scan spectral shear to map out single-photon state

V-phase: $\varphi(\omega) = |\omega - \omega_0|\tau$

Two pulses separated by $\sim 2\tau$ with different central frequencies

A. O. C. D. et al, arXiv 1709.05248 and 1802.07208

Reconstructed single-photon states with Λ - and V-spectral phase

A. O. C. D. et al, arXiv 1709.05248 and 1802.07208

Arbitrary unitary operations on many modes is required for OQTs

Time-frequency mode operations

 $\psi_{in}(t)$ Requires both spectral and temporal mode unitary operations $\psi_{out}(t) = U\psi_{in}(t)$ $\int \int \phi_1(t) \psi_1(\omega) \phi_2(t) \psi_2(\omega) \cdots \phi_n(t) \psi_n(\omega)$

Can be realized with electro-optic temporal phase modulation and spectral phase

Ask James Ashby at poster session!

Summary: pulsed modes

- Modes and photons: A tale of two communities
- Temporal-spectral pulsed modes: Good for spelling (information encoding)
- Manipulation by phase only operation (shear and more!)
- Frequency shear, time lens, entanglement swapping, pulse measurement, and MORE TO COME!!

Spectral-temporal pulsed modes

Thanks to those who have contributed!

Christoph

Söller

Michał

Karpiński

Laura Wright

Valerian Thiel

Michał

Jachura

John Fell OUP fund

Alex

Davis

Peru **D'Ornellas**

Networked Quantum Information Technologies

Spectral-temporal pulsed modes

Current Oregon Group!

See posters from Sofiane and James!

Sofiane Merkouche

James Ashby Hannes Sobattka Mostafa El Demery

National Science Foundation WHERE DISCOVERIES BEGIN

Oregon Center for Optical Molecular & Quantum Science

DN

UNIVERSITY OF

REC

John Templeton Foundation

Quantum at Oregon

Oregon Center for

Optical Molecular &

"Quantum" research at Oregon

- B. Alemán
- D. Allcock
- J. Cina
- A. Marcus
- B. McMorran J. Noeckel

M. Raymer B. Smith

D. Steck

S. van Enk

H. Wang

D. Wineland

PhD and postdoc positions available: Contact bjsmith@uoregon.edu

THANKS!

National Science Foundation WHERE DISCOVERIES BEGIN

Oregon Center for Optical Molecular & Quantum Science

UNIVERSITY OF

